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SUMMARY

Intrusion detection systems (IDSs) often trigger a huge number of unnecessary alerts. Managing the
overwhelming number of alerts, especially from multiple IDS products, is a concern to every security
analyst. Analyzing and evaluating these alerts is a difficult task that frustrates the effort of analysts. In fact,
true alerts are usually buried under heaps of false alerts. We have identified several research gaps in the
existing alert management approaches that need to be addressed, especially when handling alerts from
different IDS products. In this work, we present an efficient alert management approach that reduces the
unnecessary alerts produced by different IDS products using two main modules: an enhanced alert
verification module that validates alerts with vulnerability assessment data; and an enhanced alert
aggregator module that reduces redundant alerts and presents them in the form of meta alerts. Finally, we
have carried out experiments in our test bed and recorded impressive results in terms of high accuracy
and low false positive rate for multiple IDS products. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Increasing cybercrime has seen a great demand for security devices for computer networks. Unfortu-
nately, there is no single device with the ability to tackle all the network security concerns. As a result,
many organizations are increasingly looking for additional security technologies to counter risk and
vulnerability that other security tools fail to address. Intrusion detection systems (IDSs) are commonly
used to complement other security tools in detecting network intrusions [1,2]. Recently, IDSs have
gained wide acceptance as a valuable investment in organizations because they offer a layer of defense
to computer networks.

Generally, IDSs gather and analyze information in a network in order to identify possible security
breaches and generate an alert or alarm if an intrusion is detected. There are two classes of IDS [3]:

 Signature-based IDS: this recognizes patterns of attack and works in a similar way to antivirus
software. The IDS essentially contains attack descriptions or signatures and matches them against
the audit data stream, looking for evidence of known attacks. It employs signature databases of
well-known attacks, and a successful match with current input raises an alert. Signatures
generally target widely used applications or systems for which security vulnerabilities are widely
advertised.

e Anomaly-based IDS: this looks for deviations from normal usage behavior in order to identify
abnormal behavior. An anomaly detection technique relies on models of the normal behavior
of a network. The IDS may focus on the users, the applications or the network. Behavior profiles
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are built by performing statistical analysis on historical data, or by using rule-based approaches to
specify behavior patterns.

IDSs are designed to generate alerts of high quality to the analysts; unfortunately, traditional IDSs
have not lived up to this objective because they trigger an overwhelming number of unnecessary alerts
[4]. In fact, most of these alerts are primarily irrelevant resulting from non-existing intrusions [3-5].
The art of detecting intrusions is still far from perfect [4,5]. Actually, the current IDSs appear
ineffective due to large volumes of alerts. It is interesting that false alerts form the largest proportion
of the total number of alerts produced by IDSs. The interesting alerts are often missed in the analysis
because they are buried under heaps of large numbers of false alerts [6,7]. In busy and large networks,
the analysis of alerts becomes an unmanageable task and hence it is difficult to understand the
intrusions behind the alerts. It is important to note that reduction of alerts and provision of quality
alerts are very critical aspects of alert management.

Our work focuses on reduction of the unnecessary alerts that are often generated by multiple
signature-based IDSs. Alert reduction is a well-explored topic in alert management. More particularly,
alert verification has been cited as a key component in alert management and looks to be very
promising technique to deliver alerts of high quality. Generally, the alert verification process uses
vulnerability assessment data to establish whether a given alert represents a real threat to the network
or not. This technique filters out any alert that does not have a corresponding vulnerability in a given
network. Although several efforts have been made in the literature regarding use of the alert verifica-
tion technique to improve the quality of alerts, there are several research gaps that need to be addressed
in order to reduce unnecessary alerts significantly, especially in a network with multiple IDS products
from different vendors. As seen in Section 2, it is evident that knowledge-based approaches suffer
from the issue of having incomplete details concerning vulnerabilities such as reference i.d.s that
uniquely identifiers different vulnerabilities. This problem worsens when dealing with alerts generated
by different IDS products because each product uses its own set of reference i.d.s, which may be
different with other IDS products. In fact, the alert verification-based approaches do not have a
comprehensive and effective collaborative architecture to improve the quality of alerts. We also noted
that the act of alert verification may not guarantee final alerts of high quality. As noted in Section 2,
little attention is given to alerts after the alert verification process. The validated alerts may contain
a massive number of redundant and isolated alerts that need to be reduced. The trend of the multi-step
intrusions is on the rise, leading to unmanageable redundant alerts. For example, a single intrusion can
generate several alerts with common features. The analysis of single redundant alerts provides partial
information on the attack that does uncover the real patterns of the attacks. This calls for a better post-
alert verification mechanism that aggregates the individual redundant and isolated alerts representing
every step of attack to have the ‘big picture’ of attacks for different IDS products.

This paper proposes an effective alert management approach that handles alerts generated by
signature-based IDSs from different vendors. The approach has two main modules: the alert
verification module, which validates alerts with vulnerability data; and the alert aggregation module,
which reduces the volumes of redundant and isolated alerts belonging to the same attack activity
within a particular time window for the different IDS products and present alerts in the form of meta
alerts. With the experiments, we are able to demonstrate the effectiveness of the proposed approach.
We are able to successfully reduce the unnecessary alerts from different IDS products. The
contributions of this work are summarized as follows:

¢ Development of an effective alert verification-based collaborative architecture to improve the
quality of alerts raised by multiple IDS products. This includes the development of an enhanced
alert verification module that is able to successfully validate the alerts produced by multiple IDS
products, and development of an enhanced alert aggregation module that aggregates alerts of
multiple IDS products in order to reduce the high number of redundant and isolated alerts after
the alert verification process. The aggregation module is able to further reduce similar alerts
generated by different IDS products.

* Construction of comprehensive vulnerability assessment data in order to improve the accuracy
and quality of alerts. The vulnerability assessment data is drawn from four sources: scan reports
produced by different vulnerability scanners; popular known vulnerability databases such as
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CVE and OSVDB; reference details from different IDS products; and the details of network
resources of a given network.

The rest of the paper is organized as follows. Section 2 discusses related work. In Section 3 we
discuss our proposed approach. Section 4 describes the experimental set-up and analysis of the
results. Section 5 concludes the paper.

2. RELATED WORK

IDSs often do not generate alerts of high quality, for several reasons [4]. For example, IDSs use their
default set of signatures and hence are prone to trigger alerts for most intrusions regardless of success
or failure to exploit vulnerabilities in a given network. There are several existing approaches designed
to improve the quality of alerts and they have their merits and demerits. For example, tuning and
reconfiguring of the signature database may eliminate some of the false alerts but may not work well
in a large network because it is difficult to have all sensors tuned to an acceptable false positive level.
In addition, the process of tuning and reconfiguring databases requires extensive knowledge and
experience of IDS signatures [3,7,8]. Moreover, the improper manipulation of signatures could lower
detection rates, hence exposing critical network resources to risk, especially if the critical intrusions are
not detected. Correcting all the known vulnerabilities before damaging intrusions take place in order to
avoid alerts may not be a possible solution because some vulnerabilities are protocol based and thus an
immediate patch may not be available [9].

Kruegel et al. [7] observed that most IDSs either do not either consider network context or do not
fully understand what is being protected, and hence trigger volumes of meaningless alerts. In the field
of alert management, the alert verification technique has been cited as a critical component in
improving the quality of alerts. The underlying principle of alert verification is to filter out alerts that
do have corresponding vulnerabilities in a given network, thereby improving the accuracy of alerts. It
is argued that many of the false alerts can be reduced by focusing on the vulnerabilities of the protected
network [7,8,10]. Valeur [1] notes that failure to exclude the alerts that refer to failed attacks may lead
to false positive alerts being misinterpreted or given undue attention. The authors note that when any
scheme receives false positives as input the quality of the results can be degraded significantly. Al-
Mamory and Zhang [11] note that most of the general alert aggregation approaches (e.g. [12-17])
do not make full use of the information that is available on a given network. This means that the
general alert correlation approaches usually rely on the basic information presented on alerts which
may be inadequate and unreliable and may lead to poor correlation results. In fact, correlating alerts
that refer to failed attacks can easily result in the detection of whole attack scenarios that are non-
existent. It is crucial to integrate the network context information in alert correlation in order to
identify the exact level of threat that the protected systems are facing. In this section, we describe
several prominent works aimed at reducing unnecessary alerts. First we focus on the general alert
verification-based approaches and later on the alert verification-based approaches that use collabora-
tive architecture to improve the quality of alerts. In this section, we have compared our approach to
other similar approaches while pointing out the key differences.

An interesting approach to verify alerts is proposed by Kruegel ef al. [7] in order to improve the
false positive rate of IDSs. The approach has architecture for alert analysis and generation of a
prioritized report for security analysts. Basically, the work introduces a plug-in for Snort to verify
alerts. That is, the plug-in integrates the Nessus vulnerability scanner into the Snort. When an alert
is raised, it is not immediately forwarded to the analyst but is passed to the verification engine. The
underlying assumption of this approach is that every Snort signature comes with a unique identifier
to check the presence of a corresponding vulnerability. The approach looks very promising but lacks
useful additional information on host architecture, software and hardware to support better alert
verification. Again, the approach does not offer a collaborative architecture to handle alerts from
multiple IDS products. In addition, the approach does not address the issue of reducing the redundant
and isolated alerts after alert verification.

Some notable efforts have been done on aggregating alerts in order to have meta alerts; such works
include Julisch [12], Valdes and Skinner [13], Debar and Wespi [14], Al-Mamory and Zhang [15],
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Sourour et al. [16] and Jan et al. [17]. These works have reported considerable progress in reducing
unnecessary alerts. However, our approach employs an alert validation technique before the aggrega-
tion of alerts is done. It is important to note that most of the approaches that aggregate alerts usually
deal with non-validated alerts (unverified alerts).

Ning et al. [18] propose an alert correlator on the basis of the observation that most attacks
consist of several related stages, with the early stages preparing for the later ones. Hyper-alert
correlation graphs are used to represent correlated alerts in an intuitive way. The approach is
useful, but it is ineffective when the attackers use either a different or spoofed IP source address
at each attack step.

A possible correlation approach based on integration of Snort, Nessus and Bugtraq databases is
proposed by Massicotte et al. [19]. It is based on the reference numbers (identifiers) found on Snort
alerts in order to link signature vulnerabilities contained in common vulnerability exposure (CVE),
Bugtraq and Nessus scripts. The approach appears promising in trying to show a possible correlation
based on reference numbers, but it is not effective because not all alerts have reference numbers and
there is no guarantee that the lists provided by CVE and Bugtraq contain a complete listing of all
vulnerabilities. In addition, unlike our approach, the approach does not incorporate a collaborative
architecture to handle alerts from multiple IDS products.

Porras et al. [20] propose an alert filtering-based approach known as M-Correlator. It is based on
knowledge of the network architecture and vulnerability requirements of different incident types in
order to tag alerts with a relevance metric and then prioritize them accordingly. In this approach,
any alerts representing attacks against non-existent vulnerabilities are discarded. The approach
correlates security alerts produced by spatially distributed heterogeneous information security
(INFOSEC) devices. The basic principle of this approach is that it takes into account the topology
and operational objectives of the protected network when alerts are being correlated and finally
evaluates the impact of alerts on the overall mission that a network infrastructure supports. There
are two main processes in M-Correlator: correlation and aggregation. That work processes alerts from
different sources such as IDS, firewalls and other devices, while our work deals with IDS alerts only.
Unlike in our work, the authors do not propose a comprehensive vulnerability data model to fully
integrate the vulnerability data into the network context.

A formal treatment of the integration of context information with alert messages known as M2D2 is
proposed by Morin et al. [10]. The underlying principle of the approach is to use reference numbers to
locate which vulnerability it is and then verify its genuineness using other context information. The
approach performs alert correlation using different types of information. Based on these formally
defined concepts, the approach examines the relationship between them and performs alert correlation.
M2D2 mainly focuses on alert aggregation while concepts such as building the attack scenarios are
still to be explored. Like the aforementioned approaches, this approach suffers because not all alerts
have reference numbers and there is no guarantee that the list provided by either CVE or Bugtraq
contains a complete listing of all vulnerabilities. In a more recent work, Morin ez al. [21] present a data
model known as M4D4, which formalizes the concepts and relationships of different network elements
(such as network topology, network resources, vulnerabilities and attacks) in order to reason about
alerts. The authors observe that many alerts (especially false positives) involve actors that are
inside the monitored information system and whose properties are consequently also observable.
The two aforementioned approaches do not address the issue of redundant alerts after the alert
verification process.

Hubballi ez al. [3] propose a false positive alert filter to reduce false alerts. The underlying principle
of this approach is the construction of a threat profile of the network which is used for alert correlation.
This approach compares the IDS alerts with network-specific threats and finally filters out the
unnecessary alerts. Basically, the approach has two major steps: (i) alerts are compared with the threat
profile in order to generate correlation binary vector generation; and (ii) classification of correlation
binary vectors using neural networks. We wish to note that the idea of comparing the alerts with the
threat profile (vulnerabilities) appears promising in improving the accuracy of the final alerts.
Nevertheless, the approach does not incorporate a collaborative architecture to handle alerts from
multiple IDS products. In addition, the approach does not address the issue of reducing the number
of similar and repetitive alerts after verification.
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Numerous works have proposed to evaluate alerts using some metrics that are computed based on
vulnerability data. For instance, Bakar and Belaton [22] propose an intrusion alert quality framework
(IAQF) to improve the quality of final alerts. The underlying principle of this framework is the use of
vulnerability information that forms the basis to compute alert metrics (such as accuracy, reliability,
correctness and sensitivity). Such a metric prepares alerts for higher-level reasoning and thus better
decision making. The proposed framework has the following modules: alert collection, host/network
information gathering, quality criteria scores measurement and normalization. There are also storage
databases that store different types of data, i.e. raw alerts, host/network data, quality criteria rules,
and enhanced and enriched alert data. We note that the framework improves the alert quality before
alert verification but does not take into consideration the issue of reducing the redundant and isolated
alerts after alert verification. In addition, the approach mentions the concept of alert correlation but has
not implemented it. Similarly, Njogu and Jiawei [23] propose an approach to reduce unnecessary alerts
that uses vulnerability data to compute alert metrics. This approach computes the similarity of alerts
based on the alert metrics. All the alerts that show close similarity are grouped together into one
cluster. An extension of this work is proposed by the same authors [24] in order to reduce unnecessary
alerts based on enhanced vulnerability assessment data. The authors use the vulnerability assessment
data to filter out any alert with no corresponding alerts, thus improving the accuracy and quality of
alerts. The aforementioned approaches have reported tremendous progress in reducing unnecessary
alerts; however, the approaches do not incorporate an effective collaborative architecture to handle
alerts from multiple IDS products. Our new work seeks to strengthen our previous work in four ways:
the first is to improve the accuracy of alerts by incorporating reference details of multiple IDS products
in the vulnerability data; second is the use of dedicated alert verifiers for every IDS product; third is the
use of dedicated alert aggregators for every IDS product; and finally we propose an approach that can
aggregate similar alerts generated by multiple IDS products.

We noted that there are several approaches that use a collaborative technique in order to reduce
unnecessary alerts. An interesting collaborative framework architecture known as TRINETR is
proposed by Yu et al. [25]. The proposed scheme is used for multiple intrusion detection systems in
order to work together to detect real-time network intrusions. The proposed architecture is composed
of three core parts: (i) collaborative alert aggregation; (ii) knowledge-based alert evaluation; and (iii)
alert correlation to cluster and merge alerts from multiple IDS products to achieve an indirect
collaboration among them. We note that the approach has the ability to reduce false positives by
integrating network and host system information into the evaluation process, but the approach has a
major drawback. This approach has not implemented the alert correlation part, which is very important
when generating condensed alert views known as meta alerts.

A collaborative and systematic framework to correlate alerts from multiple IDSs by integrating
vulnerability information is proposed by Liu et al. [26]. The basic principle of the approach is to apply
contextual information to distinguish between successful and failed intrusion attempts. The approach
assigns confidence values to the alerts immediately after alert verification. The confidence values are
0 (for false alert) and 1 (for true alert). The corresponding actions are triggered based on the confidence
values. We note that the approach has some merits but does not provide details of the procedure used
to validate the alerts and does not include details on how the alerts are transformed into meta alerts.
The proposed scheme is not able to differentiate levels of alert relevance. In addition, the approach
only processes alerts with reference numbers (alerts without reference number are not considered),
thus lowering detection rates. Similarly, an approach to filter innocuous attacks that takes advantage
of the correlation between IDS alerts and the threat profile is proposed by Michele et al. [9]. Among
the core units of the proposed approach are filtering and ranking units. A similar but extended work is
presented by the same authors. They propose a distributed architecture [27] to provide security
analysts with selective and early warnings. According to this approach, alerts are ranked based on
match or mismatch of alerts between the alert and the vulnerability assessment data. We regard this
type of ranking to be restrictive because: first, it relies on software match or mismatch to determine
whether an alert is important or unimportant; Secondly, it does not indicate the degree of relevance
of alerts and hence does not offer much help to the analyst. Moreover, the two aforementioned
approaches do not consider the issue of reducing redundant and isolated alerts after alert verification.
In our work, we prioritize alerts into different levels according to their degree of interestingness.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2014)
DOI: 10.1002/nem



N. HOANGTU, L. JIAWEI AND H. W. NJOGU

A general correlation framework that includes a set of components such as alert fusion, multi-step
correlation and alert prioritization is proposed by Valeur et al. [1]. The raw alerts are processed in
these components. In this approach, the alerts are fused before they are verified. Later, the alerts are
forwarded to the alert correlation and prioritization components. The authors observe that reduction
of alerts is an important task in alert management and note that when any scheme receives false
positives as input the quality of the results can be degraded significantly. The framework proposed
in our work is inspired by logical framework of Valeur et al. There are several key differences. First,
the authors use scanning reports to verify alerts, whereas our work uses up-to-date and comprehensive
vulnerability data to validate alerts. Secondly, we verify alerts prior to the aggregation phase process
because efforts to improve the quality of alert should start in the early stages of alert management.
Thirdly, the framework proposed by the authors has several components that may contribute to
negative performance of the framework, whereas our approach has fewer but robust components.
Lastly, our work focuses not only validating alerts reported by multiple IDSs but also aggregates alerts
of multiple IDS products.

An architecture for automatic alert verification known as ATLANTIDES is proposed by Bolzoni
et al. [28]. ATLANTIDES reduces false positives both in signature- and anomaly-based IDSs. It has
an engine to correlate alerts with an output anomaly detector (OAD), which acts as an anomaly
detector in the reverse channel. The underlying principle of the approach is that there should be an
anomalous behavior seen in the reverse channel in the vicinity of the alert generation time. Therefore,
if these two are compared a good guess about the attack corresponding to the alert can be determined.
We note that the time window used to look for the alert correlation is very critical for correctness of the
approach. Therefore, a very small time window may result in an increase of false positive alerts, hence
affecting performance.

In summary, we observed that most of the alert verification-based approaches described in this
section are able to validate alerts successfully. However, there are several issues that need to be
addressed, as evidently seen in this section. This section has revealed that most of the vulnerability-
based approaches are able to produce alerts that are useful in the context of the network. However,
these approaches are still at the preliminary stage and there are some research gaps that need to be
addressed in order to produce better results. The act of validating alerts may not guarantee alerts of
high quality because the validated alerts may contain huge volumes of redundant alerts, as evidently
seen in this section. Also as seen in this section, most of the existing approaches hardly process alerts
after alert verification; hence the need to consider the issue of reducing the huge number of redundant
and isolated alerts after verification. In addition, the vulnerability-based approaches focus on
improving the quality of alerts that are generated by one particular IDS product and therefore do not
offer a collaborative architecture to handle alerts from multiple IDS products. There is a need to focus
on how to reduce the unnecessary alerts generated by multiple IDS products and therefore advance the
notion of collaborative architecture for different IDS products. Lastly, we noted that several
approaches rely on incomplete data such as incomplete reference i.d.s and outdated vulnerability
assessment data to validate alerts and hence are likely to give inaccurate results. As noted earlier,
our proposed approach has an architecture that employs the following modules: an alert verification
module that uses vulnerability assessment data to validate alerts; and an aggregation module to merge
the alerts of multiple IDS products in order to reduce the high number of redundant and isolated alerts
after alert verification process.

3. THE PROPOSED APPROACH

In this section we describe the proposed architecture in order to address the challenges of alert
verification-based approaches. Basically, the proposed solution has two major components: alert
verification module and alert aggregation module. The proposed approach collects raw alerts produced
by multiple IDS products using the alert pre-processor unit as illustrated in Figure 1. The function of
the pre-processor is to collect raw alerts and pre-process the alerts.

Alert pre-processing involves converting the raw alerts into intrusion detection message exchange
format (IDMEF) [29] and the extraction of important features of alerts such as IP and port numbers.
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Figure 1. The general architecture of the proposed alert management approach.

The purpose of IDMEF is to standardize the formats of alerts generated by multiple IDS products,
since different types of IDS products have different alert formats. The pre-processed alerts are
forwarded to the alert verification module and then to the alert aggregation modules.

In summary, the main function of alert verification is to validate the alerts in order to filter out those
with no corresponding vulnerability, thus improving the accuracy and quality of final alerts. The main
function of the alert aggregation module is to reduce the redundant and isolated alerts from different
IDS products. Eventually, the final alerts are presented to analysts in the form of meta alerts. Figure 1
illustrates the proposed strategy.

3.1. Enhanced alert verification module

As mentioned earlier, the signature-based IDSs are run with their default configurations (signature
database). In fact, these IDSs are not fully integrated with network resources and therefore do not
check the relevance of an intrusion (reported in the alert) to the local network context. As a result,
the IDSs may generate huge volumes of raw alerts, the majority of which are irrelevant alerts and
are not useful in the context of the network.

The alert verification module receives pre-processed alerts from the alert pre-processor. Unlike
existing alert verification approaches [3,6,7,18,25] that depend on incomplete and incomprehensive
vulnerability assessment data to process all the raw alerts, our work introduces comprehensive
vulnerability assessment (CVA) data to improve the quality of alerts before they are forwarded to
the security analysts. The enhanced alert verification module uses CVA data to validate the raw alerts
produced by multiple IDS products. The verification module validates the raw alerts by measuring
their similarity to corresponding vulnerabilities contained in CVA data, as illustrated in Figure 2. Both
alert and vulnerabilities have comparable features and hence it is easy to measure the similarity. The

CvA data

Pre- processed

25 Alertverifier f——y>Validated Alerts

Figure 2. Alert verification module.
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validation process helps to determine the seriousness of alerts with respect to the network under
consideration. The uniqueness of our verification module is how we have constructed the CVA data,
as described in Section 3.1.2. Unlike other approaches, our approach has implemented a simple but
robust alert verification process.

From the literature it is noted that appropriate referencing of vulnerabilities plays a critical role in
ensuring an accurate alert verification process. Different IDS products refer to the vulnerabilities
differently, hence the need to standardize the referencing of vulnerabilities. In the next section, we
explore possible solutions, such as the open source vulnerability database (OSVDB), to assist in
referencing the vulnerabilities. The details of how a comprehensive list of vulnerabilities is derived
from various sources of vulnerabilities are discussed in the next section.

In order to improve the performance of alert verification, as mentioned earlier, the alert verification
module has dedicated alert sub verifiers for different classes of attack. The scope of the types of attack
considered in this work is: DoS, Telnet, FTP, MySQL and SQL. The alert verifier has six sub verifiers,
as follows (see Figure 3):

e DoS alert sub verifier: validates alerts reporting DoS attacks.

e Telnet alert sub verifier: validates alerts reporting Telnet attacks.

e FTP alert sub verifier: validates alerts reporting FTP attacks.

e SQL alert sub verifier: validates alerts reporting SQL attacks.

* MySQL alert sub verifier: validates alerts reporting MySQL attacks.

e Undefined alert sub verifier: validates alerts reporting attacks that have not been considered
during the design of alert verification module (handles related alerts reporting new attacks and
not included in the above five classes).

The proposed work introduces multiple alert sub verifiers to handle alerts regardless of the IDS
product employed in the network. The main reason for using multiple alert verifiers in our approach
is to improve the alert verification process, as shown in Figure 3. Another key benefit of using multiple
sub verifiers is the ease of deployment in relatively large networks, especially where multiple products
are deployed. As mentioned earlier, the main goal of the existing alert verification-based approaches as
seen in Section 2 is to validate alerts from one particular IDS product. Unlike the existing approaches,
the principal function of our alert verification module is to improve the accuracy of alerts (produced by
multiple IDS products) by validating the alerts with vulnerability assessment data. The alert
verification module validates alerts by measuring their similarity with respect to the network in order
to determine the importance of alerts, as illustrated in Figure 4.

The alert verification process basically involves measuring the match or mismatch of features
between alerts, as shown in Table 1, and vulnerability (vulnerability assessment data shown in Table 2)

DoS alert sub verifier

Telnet alert sub verifier

FTP alert sub verifier

Alert venfier

SQL alert sub verifier

MySql alert sub verifier

Undefined alert sub verifier

Figure 3. Sub verifiers of alert verification module.
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Figure 4. Comparing the features of alerts and vulnerability assessment data.

since both the alert and vulnerability assessment data have comparable features (refer to Figure 4). The
vulnerability assessment data represent potential threats likely to be exploited by attackers and
therefore the alert verification module improves the accuracy of alerts. The underlying assumption
of the alert verification process is that, the higher the number of matches (alert relevance score), the
higher is the likelihood of a successful intrusion. The alert relevance score used in our approach helps
to separate false alerts from true alerts. It is worth noting that we performed a series of regrouping of
alerts on the scale with the goal of searching for the best thresholds for the true and false alerts, as
shown in Table 3. We categorize the alerts into three groups depending on the alert relevance score.
As shown in the same table, the ideal relevant alert represents the most interesting alert, partial relevant
alert represents the average interesting alert, while the non-relevant alert represents an alert that is not
worth further investigation. We settled on the thresholds shown in the table but these values can be
adjusted depending on the network environment.

3.1.1. Enhancing the semantics of alerts

Generally, the features of any alert provide low-level information; hence relying solely on this
information may increase cases of important alerts being misinterpreted, ignored or delayed when they
are being evaluated. In order to improve the semantics of alerts, the alert verification module places
alerts into different categories based on the alert relevance scores as shown in Table 3. In a nutshell,
the alert relevance is based on similarity of alerts and their corresponding vulnerabilities. Figure 4
shows how alerts are compared with vulnerability assessment data.

3.1.2. Construction of comprehensive vulnerability assessment data (CVA data)

Existing alert verification-based approaches [3,7,18,25] build vulnerability data that appear effective in
validating the alerts from one IDS product. The existing approaches construct vulnerability assessment
data from sources such as known vulnerability data and network resources and do not consider the
aspect of including additional reference information from multiple IDS products. In our work, we have
constructed CVA data in order to improve the quality of alerts that are generated by different IDS
products. In brief, CVA data are comprehensive and effective data that represent the threat profile
of the network. It lists all network-specific vulnerabilities by their reference i.d., name, priority, IP
address, port, protocol, class, time and applications. We use the threat profile generator to construct
CVA data in order to identify the relevant vulnerabilities representing actual current threats to the
network. We design and implement a comprehensive vulnerability assessment data using the threat
profile generator, as shown in Figure 5.
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Table 3. Alert relevance score scale

Threshold Alert type

7-9 Ideal relevant alerts
4-6 Partial relevant alerts
0-3 Non-relevant alerts

IDS product 1 -
Know produc Vulnerability
vulnerability Scanner Network
databases IDS product 2 resource
(CVE, OSVDB)
IDS product 3
IDS product n
-+
> Threat profile generator
g <

Comprehensive vulnerability assessment data
(CVA data)

Figure 5. Construction of comprehensive vulnerability assessment data

Unlike other approaches described in Section 2, the generator of the proposed approach draws data
from four sources: scan reports produced by different vulnerability scanners; popular known
vulnerability databases such as CVE [30] and OSVDB [31]; reference details from different IDS
products; and the details of network resources of a given network. The generator establishes appropri-
ate relationships in the data drawn from the above sources.

As noted earlier, the appropriate referencing of vulnerabilities plays a critical role in ensuring
accuracy in the alert verification process. In the literature it is reported that different IDS products refer
to the vulnerabilities differently; hence the need to standardize the referencing of vulnerabilities. In
order to address this issue, researchers have proposed possible solutions such as the OSVDB to assist
in referencing the vulnerabilities. Such solutions may address this issue to some extent but may not
contain a comprehensive list of reference details of all the vulnerabilities. This makes it difficult to
have an independent alert verification based on one vulnerability database. Therefore, in our approach,
we complement the OSVDB database with reference details from multiple IDS products; hence the
need for a verifier for each product. We have automated the process of picking non-referenced
vulnerabilities from different IDSs in order to build comprehensive CVA data. Additional information
on building the CVA data is given in Section 4.

In the literature it is documented that dealing with attack identifiers may pose a challenge, especially
when dealing with alerts containing different names from those known by the vulnerability databases.
The IDS vendors may use different names for the same attack and so far they have not come to an
agreement on standardizing the naming of alerts. In order to address this challenge, we include the
aspect of how different IDS products reference the vulnerability (such as reference i.d.s) into the
CVA data in order to have a more accurate and comprehensive list of vulnerabilities. In addition,
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the alert verifiers are trained adequately using CVA data on how to perform the alert verification with
high accuracy. CVA data are so exhaustive and comprehensive that they permit the completeness of
the attack identifiers for our test bed.

Steps of alert validation. One of the functions of the alert verification module is to assign each alert to
the attack class that might have produced it. The alert verifier makes this decision based on their attack
identifier field (class of attack) in the alert. To facilitate the verification process, there are six sub
verifiers that are used to process alerts regardless of the IDS products. The procedure for validating
alerts using the IDS Alert-CVA data verifier is illustrated below:

Input: pre-processed alerts, CVA data
Output: validated alerts (with alert relevance score)
Step 1: compare features of pre-processed alert with the corresponding vulnerabilities in CVA data in
this order:
e IP
» Referenceld
* Port
e Time
* Application
 Protocol
e Class
* Name
e Priority
Step 2: search for corresponding vulnerabilities from CVA data. Get Alert.IPdaest to extract the
corresponding vulnerabilities in CVA data (CVA data.IP that match Alert.IPdest).
Step 3: compute alert relevance score for every corresponding vulnerability and choose the one with
the highest score.

e If Alert. IP4.; match CVA data.IP Then IP_Score=1 Else IP_Score=0

o If Alert.Referenceld match CVA data. Referenceld Then Reference_Score=1 Else
Reference_Score=0

e If Alert.Porty.,; match CVA data.Port Then Port_Score=1 Else Port_Score=0

o If Alert.Time is greater or equal to CVA data.Time Then Time_Score=1 Else Time_Score=0

o If Alert. Application match CVA data. Application Then Application _Score=1 Else Application
_Score=0

o If Alert.Protocol match CVA data.Protocol Then Protocol_Score=1 Else Protocol _Score=0

o If Alert.Class match CVA data.Class Then Class_Score=1 Else Class_Score=0

o If Alert.Name match CVA data.Name Then Name_Score=1 Else Name _Score=0

e If Alert.Priority match CVA data.Priority Then Priority _Score=1 Else Priority _Score=0

o Alert Relevance Score =IP_Score + Reference_Score + Port_Score + Time_Score +
Application_Score + Protocol_Score + Class_Score + Name _Score+ Priority _Score

Step 4: categorize the alerts based on alert relevance score (see Table 3).

Step 5: alerts with scores of 4 and above (both ideal and partial relevant alerts) are forwarded to the
alert aggregator.

Step 6: delete alerts with scores of 3 and below (alerts with little or no similarity with CVA data)

Note: For simplicity reasons, any match is awarded a value of 1, while a mismatch is awarded a
value of 0.

To illustrate the concept of alert verification and how the alert metrics are computed, consider the
following example. Table 1 shows a snapshot of pre-processed alerts. Table 2 shows a section of
CVA data. In Table 1 the first alert reports a teardrop attack targeting a host with IPgs 192.168.1.3
on Portges 1238. Using the alert [Py 192.168.1.3, the alert verifier extracts all potential vulnerabil-
ities in CVA data matching the IP address. In this case, CVA data have only one vulnerability
matching the alert IP4.. The verifier then matches other features (reference i.d., port, severity,
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protocol, class, time, name and application) of the alert against the said vulnerability. The alert score is
computed as follows:

IP_Score=1 because IP addresses are matching and so are the rest of the features; Reference_
Score =1; Port_Score=1; Time_Score=1; Application_Score =1; Protocol_Score=1; Class_Score
=1; Name_Score = 1; Priority_Score=1. Therefore, the alert score (total number of matches) is 9.

The verifier enriches the alert by categorizing the alert as an ideal relevant alert because the alert has
an alert relevance score =9.

In summary, unlike other alert verification-based approaches [3,6,18,25] which focus on improv-
ing the quality of alerts generated by one IDS product, the proposed alert verification module is
designed with the goal of improving the quality of alerts generated by multiple IDS products.
The other key difference between our work and related studies is how the vulnerability data are
constructed. We include the attack reference details of multiple IDS products in order to build
comprehensive data.

3.2. Alert aggregation module

The literature has documented that the trend of the multi-step intrusions is on the rise and therefore
contributing to the high number of unmanageable redundant alerts. Actually, a single intrusion can
generate several alerts with common features. Generally, the analysis of single redundant alerts may
provide partial information on the attack and hence is not valuable in uncovering the real patterns of
the attacks. In order to address this issue, there is a need to aggregate the individual redundant and
isolated alerts representing every step of the attack to have an overall view of attacks for the different
IDS products. The trend of large modern networks is to implement multiple IDS products, especially
where the network is viewed to be prone to attacks and has valuable information. The era of one
IDS product monitoring a network segment is fading, especially where the information is viewed as
important.

We designed the alert aggregation module with the goal of reducing the volumes of redundant alerts
belonging to the same attack activity within a particular time window. The alert aggregation module
receives validated alerts (unrelated, isolated and redundant alerts) from the alert verification module.
As shown in Figure 6, the module has different sub aggregators for different classes of attacks. We
used different dedicated sub aggregators in order to simplify the process of alert aggregation,
representing different classes of attacks. These sub aggregators are adjusted dynamically and
automatically according to each class of attack.

Alert Aggregation module

DoS sub aggregator

Validated alerts FTP sub aggregator
f om multiple
IDS products Telnet sub aggregator

MySql sub aggregator

Sql sub aggregator

Undefined attack sub aggregator

Figure 6. Alert aggregation module
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The scope of the attacks considered in this work includes DoS, Telnet, FTP, MySQL and SQL. The
aggregator has six sub aggregators, as shown in Figure 7:

L]

DoS alert sub aggregator: aggregates alerts reporting DoS attacks.

Telnet alert sub aggregator: aggregates alerts reporting Telnet attacks.

FTP alert sub aggregator: aggregates alerts reporting FTP attacks.

SQL alert sub aggregator: aggregates alerts reporting SQL attacks.

MySQL alert sub aggregator: aggregates alerts reporting MySQL attacks.

Undefined alert sub aggregator: aggregates alerts reporting attacks that have not been considered
during the design of the alert aggregation module (i.e. processes redundant alerts reporting new
attacks and not covered in the other classes).

The underlying principle of the alert aggregation module is simple. Each alert sub verifier of a given
class of attack forwards alerts to the corresponding sub aggregator of that specific class of attack. To
further illustrate this, a DoS alert sub verifier forwards its alerts to DoS alert sub aggregator. We wish
to note that the final alerts of the alert aggregation module are in the form of meta alerts (meta alerts
contain summarized information of related alerts of a given intrusion).

Some definitions used for the variables of each meta alert M are as follows:

L]

Attack class of meta class (M.Attack_Class): denotes the class of attack of alerts.

Relevance of meta alert (M.Rel): denotes the relevance of alerts.

Create time of meta alert (M.createtime): denotes the create time of the meta alert and is derived
from the stamp time of the first alert that created the meta alert.

Total alerts (M.Nbrealerts): denotes the number of alerts contained in the meta alert. This number
is increased each time a new alert is fused to meta alert.

Update time (M.updatetime): denotes the time of the last update in the meta alert and represents
the time of the most recent alert fused to the meta alert.

Non-update time (M.non-updatetime): denotes the time elapsed since the last update made on the
meta alert. The time is reset to 0 each time a new alert is fused to the meta alert.

Stop time (M.stoptime): denotes the time when the meta alert is assumed to have completely fused
the necessary alerts.

Time out (M.Time,,,): denotes the time that a meta alert should continue waiting for additional alert
(s); it varies with the class of attack.

Exploit cycle time (ECtime): denotes the time that an exploit is believed to take (attack period); it
varies with the class of attack.

Meta
Alert 1

DoS alert sub aggregator

Sqlalert sub aggregator Meta

Alertn
Alast FTP alert sub aggregator
aggregator

Telnet alert sub aggregator

MySql alert sub aggregator Meta
Alert 1

Undefined attack sub :
Meta
Alertn

Figure 7. Sub aggregators of alert aggregator
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¢ Additional information such as source address (M.IPs.e and M.Portsic) and destination address
(M.IPdest and M.Portdest).

The procedure of aggregating alerts is described as follows. The sub aggregator of a particular class
of attack uses the IP address(es) of a given validated alert to identify the potential meta alerts. The sub
aggregator measures the similarity of the validated alert and the existing meta alerts in order to identify
the best meta alert representing the alert.

In this work, we only consider and finally fuse an alert that fully corresponds (all overlapping features are
equal: IP, port, time) to an existing meta. This means that if an alert fully corresponds to a given meta alert
then details of the meta alert are updated (M.Nbre, s is incremented, M.update,,. is updated and M.
non-update,. is reset to 0). We wish to note that only one meta alert can be chosen from potential meta
alerts and an alert can belong to only one meta alert. However, if the meta alert does not exist that
fully corresponds to the alert being considered, then a new meta alert is created. The new meta alert
draws basic details from that alert, i.e. M.Nbre,es 1S set to 1, the timestamp of the alert becomes the
M.create;;,. and class of attack of alert becomes M.Attack_Class. It is very important to know how
long an existing meta alert should remain active in order to deliver timely and accurate meta alerts to
the analysts. To determine the activeness of meta alerts, we used the following policy:

e If M.non-update ;. < M.Time,,, then the meta alert under consideration continues to wait for ad-
ditional related alerts, and when the related alerts are received the meta alert details are updated.

e If M.non-update;,,. > M.Time,,, then M.stoptime is updated and the meta alert under
consideration stops waiting for additional alerts.

In order to achieve the best results of alert aggregation, the values assigned to the M.non-update,,. and
M.Time,,, differ according to the class of attack being considered. This helps to aggregate the necessary
alerts appropriately. It is important to differentiate the functions of M.Time,,, and ECyj,.. The M. Time,,
ensures the necessary alerts are fused to the meta alert, while the ECy,,. ensures all the meta alerts reporting
a particular attack are formed accordingly. The ECy,,c of a given class of attack helps to determine the extent
of an attack using meta alerts generated regarding a particular attack within an exploit cycle time. We also
note that each alert sub aggregator of a particular class of attack has its own M.Time,,; and EC,e. In this
work, both M.Time,, and ECy,, of a given meta alert are not necessarily equal, for several reasons. The
major reason is that M.Time,, of a given meta alert could be lower than ECy,,. of the same meta alert.
Generally, most of the events forming the different steps of intrusion are generated in the early stage of
an exploit cycle [32] hence there is no need to wait for the complete exploit cycle timeframe of an attack.
In addition, different types of network experience different types of attack. Some networks may be prone
to both single-step and multi-step attacks. Therefore, it would be inappropriate for single-step attacks to have
longer M.Time,,, . This could lead to an unreasonable delay before analysts receive the meta alerts.

It is important to note that ECy;;,,. of a given attack may expire before all steps of the corresponding
attack scenario are executed. This situation may appear like a major drawback but this is not so
because the information collected on meta alert(s) at that time could show the analyst what the intruder
has performed and obtained. Therefore the analyst is in a position to predict how the intruder will
perform in future as well as think of how to stop future attacks. Our approach presents a big advantage
because experienced analysts are able to adjust the values of M.Time,,, and ECy,, of a given class of
attack in order to optimize the detection of all attack steps. In addition, it is noted that a multi-step
attack is likely to generate several meta alerts in a given exploit cycle time, whereas a single-step
attack is likely to generate one meta alert within a given exploit cycle time.

The final step involves forwarding the meta alerts to the analysts. In this we assume that the alerts
are forwarded immediately to the alert aggregation module by the alert verification module.

The proposed solution helps to identify the nature of the attack since it is implemented to monitor
network traffic. Attack traffic could be directed to a number of hosts in a network; thus the solution
helps to identify the nature and extent of the attacks.

3.2.1. Aggregation of meta alerts
It is important to note that aggregating alerts into meta alerts may not be a completely effective way to reduce
unnecessary alerts. It is infeasible to manually process the meta alerts, particularly those that are sharing a
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number of features. In fact, when a given attack occurs in a network (with multiple IDS products), different
IDS products may respond by generating alerts that may have some similar features such as source address,
destination address and reference i.d.s. Such meta alerts need to be aggregated further based on their common
features in order to reduce unnecessary alerts, as illustrated in Figure 8. For example, when a particular attack
occurs in a given network, an IDS product may generate an alert that may look similar to an alert generated by
another IDS product (if the two IDS products are network IDSs and have been installed in the same network).

The meta alert aggregator further processes the meta alerts and give output in form of aggregated meta
alerts. Aggregating meta involves merging the meta alerts that share some features such as reference i.d.s,
source and destination addresses within a class of attack. In a nutshell, aggregating meta alerts reduces
overall computational costs and analysts are likely to take a relatively shorter time to review the final alerts.

When compared with general alert correlation approaches [12,13,15,33] that apply the concept of
one correlation schema to aggregate related alerts, our alert aggregation module has a distinctive
feature because we use different aggregators and their corresponding sub alert aggregators to process
alerts from different IDS products. This means that our approach has an architecture that supports
aggregation of alerts from multiple IDS products. Actually the act of handling a specific class of attack
by a given alert aggregator and its corresponding sub aggregator for a given class of attack definitely
simplifies the process of aggregating alerts, i.e. attacks from different classes are separated appropri-
ately, hence contributing to better results. In addition, our aggregation module is fed with validated
alerts as input and processes and outputs them in the form of aggregated meta alerts. Moreover, our
alert aggregation module processes alerts of high quality (validated alerts), thus giving better results,
unlike other similar correlation approaches [13,15,33] which are fed with unverified alerts. As noted
earlier, the alert verification process filters out any alert without a corresponding vulnerability, thereby
drastically reducing the overhead (processing time and storage) associated with unverified and
unnecessary alerts. As a matter of fact, if an alert aggregation system receives unverified alerts that
contain positives as input, then the quality of the aggregation results may degrade significantly such
that the false positive alerts may be misinterpreted or, worse still, given undue attention.

In addition, when compared with other similar approaches, our approach not only aggregates alerts
from multiple IDSs but also goes further to aggregate meta alerts. Our approach does not disregard
alerts that are not shared across multiple IDS products, unlike probability-based approaches such as
Valdes and Skinner [13] and Thomas et al. [5] that pay much attention to alerts that are shared by

Meta alert aggregator

DoS meta alerts sub aggregator

Telnet metaalerts sub aggregator

FTP metaalerts sub aggregator

Meta Final Alerts
Alerts >'_

MySql meta alerts sub aggregator

Sql meta alerts sub aggregator Analyst
Undefined meta alerts sub
aggregator
Figure 8. Aggregation of meta alerts
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many IDS products and may ignore alerts from an individual IDS product (because they are not shared
by other IDS products). We feel that the assumption applied by the probabilistic based approaches may
affect the accuracy and detection rates of IDS products in general, hence influencing the final quality of
alerts negatively. In fact, the main reason why the aforementioned approaches may not provide reliable
results is because different IDS products may have different accuracy and detection rates as well as
different speeds to detect the intrusions. Finally, unlike approaches such as Valeur [1], Valdes and
Skinner [13] and Sourour ef al. [16] that use fixed values of M.Time,,, and ECy,,, of a given intrusion
to aggregate alerts, our alert aggregation module assigns different values for M.Time,,, and EC,e
depending on the nature of the IDS product and the class of attack, as well in order to effectively
aggregate alerts.

4. EXPERIMENT AND DISCUSSION

This section describes how we performed the experiment to validate the effectiveness of the proposed
approach. As mentioned earlier, the proposed approach takes raw alerts generated by different IDS
products as input, processes them using the alert verification and alert aggregation modules and
delivers them as output in the form of meta alerts. To validate the proposed approach, a test bed
was set up.

We used three different network signature-based IDSs, namely Snort [34], Prelude [35] and Shoki
[36]. The IDS products were used with their default set of rules, since most signature-based IDSs run
with their default rules. We chose one computer to provide storage services for alerts as well as
housing the CVA data. The testing machines have the following specifications: Intel Core Duo
processor (P8400) running at 2.56 MHz with 2 GB RAM. The testing machines are grouped into
two: target machines and attacking machines. The target machines are further categorized into two:

1. Servers to provide services such as FTP, Telnet, SQL and MySQL services. Five servers were
used (three Windows based, two Linux based).

2. Clients to receive services from servers. Fifteen clients were used (nine Windows based, six
Linux based).

The target machines have different operating systems, such as Windows (Windows server 2003 and
2008, XP, Vista, 7) and Linux (Red Hat, Fedora, Ubuntu). In addition, application software was
installed, such as Microsoft office (2000, 2003, 2007, 2010), Web browsers (Firefox, Internet
Explorer, Google Chrome), OpenOffice, database management software (MySQL, SQL) and Adobe
applications. In order to produce the desired results, we loaded the target machines with applications
such as FTP server, Telnet, MySQL server and SQL server.

The attacking machines were run using different operating systems. Five attacking machines were
used (three Windows based, 2 Linux based). Attacking machines were installed with widely known
attacking tools such as Metasploit tool [37] in order to generate exploits and vulnerabilities of the
target machines in the test bed. Two major types of attacks were executed: relevant attacks have the
ability to exploit the vulnerabilities of the target machines. We further categorized the relevant attacks
into two: (i) attacks that fully exploit vulnerabilities; and (ii) attacks that partially exploit vulnerabil-
ities. The second major type of attacks are the non-relevant attacks. These attacks do not have the
ability to exploit any vulnerability of the target machines. The attacks are categorized into five classes,
namely DoS, FTP, SQL, MySql and Telnet.

This experiment used attacking machines to execute attacks on the target machines. We employed
known techniques to exploit the vulnerabilities on different operating systems, software, protocols and
ports. The attacks are executed in the test bed using the available attacking tools against the target
machines. Examples of specific scenarios for multi-step attacks based on known techniques and
exploits are: (i) a multi-step attack that exploits the vulnerabilities of the FTP server in the target
machine. In this scenario, the attacking machine uses NMap to try to detect whether an FTP service
is running on the target machine (FTP attack); (ii) a multi-step attack that involves attacking machines
in order to interrupt the TCP service running in target machines. ICMP Flooder can help emulate the
attack because it can continuously transfer large packets to the target machine, hence disrupting TCP
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service (DoS attack). Other specific attacks include: DoS attacks (Teardrop, Winnuke, Syndrop, etc.);
FTP attacks (Finger redirect, Freeftpd username overflow, etc.); Telnet attacks (Telnet username buffer
overflow, resolve host conf, etc.);SQL attacks (SQL server buffer overflow, SQL injection, etc.);
MySQL (SSL hello message overflow, etc.).

We used two modes to deploy the IDS products: (i) each of the IDS products is deployed alone in
the network in order to produce alerts; and (ii) different IDS products are employed in the network at
the same time in order to produce comparable alerts. It is important to note that some attacks are run
repeatedly for a considerable period of time. We implemented the alert verification and alert
aggregation modules in JAVA. The architectures are shown in Figures 9 and 10.

4.1. CVA data

As mentioned in Section 3, CVA data comprise a comprehensive and in-depth database that represents
the threat profile of our test bed. It is implemented in MySQL. CVA data list all the vulnerabilities by
their reference i.d.s, names, severity, IP addresses, ports, protocol, class, time and applications. In a
nutshell, the threat profile generator constructs CVA data by drawing data from four sources: scan
reports produced by different vulnerability scanners such as Nessus [38] and NMap [39]; popular
known vulnerability databases such as CVE; reference details from different IDS products (Snort,
Prelude, Shoki); and finally the details of network resources of a given network. We used four sources
to identify the relevant vulnerabilities representing the actual current threats of the network, as shown
in Figure 5.

To generate reports of vulnerabilities, we employed scanners that are interoperable. The scanners
search for missing patches, service packs, vulnerable software versions, vulnerable applications,
services and protocols. The reason why we use multiple scanners is because they have different
techniques to detect vulnerabilities. Scanners are configured to run periodically to extract the most con-
sistent and recent threat view of the test bed. The reports are processed by Perl scripts. Special agents
(Perl scripts) are installed in the target machines to track changes in applications, services and config-
uration. The necessary updates are reflected on the database of network resources, as are the CVA data.

As noted in Section 3, CVA data and IDS products may use different attack details such as reference
i.d.s and names when referring to the same intrusion and therefore could have an impact when
computing for alert relevance scores and the management of alerts in general. Standardization of attack
and vulnerabilities details is a global issue and so far there are no unique attack details such as
reference i.d.s to reference all types of attacks. Standardized schemes such as CVE have been
developed to uniquely reference and directly map attack information to vulnerabilities. Snort, Prelude
and Shoki refer their signatures to standard CVE. However, not all attacks have assigned CVE i.d.s as
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Figure 9. Test bed for mode 1
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reference i.d.s. For example, 33-42% of attack signatures in Snort (since 2003) have CVE i.d.s
[16,19]. Missing CVE details could have an impact on alert validation. The most appropriate solution
is to establish a mechanism to map identifiers for attacks and vulnerabilities. In our bid to resolve this
issue, we examined attack details such as reference i.d.s and names of vulnerabilities and attacks
contained in CVA data and multiple IDS products. This calls for the need to determine the coverage
overlap of standardized attack details between CVA data and multiple IDS products and then to
include additional attack details based on different IDS products in the CVA data.

We have proposed a mapping facility to help in setting up additional mappings based on Snort-,
Prelude- and Shoki-specific identifiers into CVA data (refer to Table 2). This involves the following:

e Examining the attack reference details contained in the CVA data and the three IDS products.

» Determining the coverage overlap of standardized attack reference details between CVA data and
Snort, Prelude and Shoki.

« Setting up additional attack reference details based on three IDS products into CVA data with the
help of the OSVDB, which is an open source database for vulnerabilities that references CVE,
Snort, Prelude, Shoki, Nessus and other leading network security products. That is, the CVA data
use other IDS products’ references such as Bugtraq i.d.s and OSVDB i.d.s when CVE i.d.s are
not applicable (complement CVE when referring to attacks).

We limited the coverage of this exercise to the attacks used in the test bed. We added the attack
information into the CVA data to ensure that the details derived were appropriate and would
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positively influence the alert validation and computation of the alert relevance score as well. This
exercise brought the benefit of completeness of attack details in the CVA data because, if attack
details are missed, this affects the alert relevance score negatively.

4.2. Performance of the proposed approach

Here we focus on the performance of different components of the proposed approach. When
constructing CVA data, we noted that the time taken to build these data was determined by factors
such as the number of IDS products deployed in the test bed, the number of target machines and
applications hosted in each target machine, and the type and number of vulnerability scanners in the
test bed. The average time to scan one target machine is 2—6 minutes depending on the above-
mentioned factors. We took 60 minutes to test each class of attack.

Our experiment generated 931 Snort alerts, 912 Prelude alerts and 965 Shoki alerts, as shown in
Table 4. The alerts shown in Table 4 conform to the number of attacks executed in our experiment.
That is, about 15% of alerts represent attacks that exploited the vulnerabilities (relevant attack) of
the test bed, while 85% of alerts represent attacks that did not exploit the vulnerability (non-relevant
attack).

We collected and pre-processed alerts using Perl scripts, as discussed in Section 3. The pre-
processed alerts were fed as input into the verification module for validation and then forwarded to
the alert aggregation module in order to reduce redundant and isolated alerts. We configured the alert
aggregation component with the following parameters:

¢ M.Timeg, = 1-3 minutes;
¢ ECme =2-14 minutes (depending on classes of attacks).

The performance of the proposed approach is presented in two categories: (i) performance
evaluation of alert verification module; and (ii) performance evaluation of alert aggregation module.

4.2.1. Performance evaluation of alert verification module
We employed two metrics in order to evaluate the effectiveness of the alert verification module:

a) Detection rate: indicates the number of attacks that are detected by IDS among all relevant
attacks that are generated. We applied the following equation: detection rate = TP/(TP + FN).

b) Accuracy: indicates the percentage of relevant attacks detected versus all cases detected as
attacks by IDS. We applied the following equation: accuracy = TP/(TP + FP).

where TP (true positive) refers to attacks that are correctly detected; FP (false positive) refers to attacks
that are incorrectly detected; and FN (false negative) refers to attacks that are not detected.

We used the above metrics to measure the effectiveness of the alert verification module before and
after alert validation, as shown in Tables 4 and 5. The results presented in Table 4 reveal that the
majority of the alerts are due to ineffectiveness of the different IDS products. Table 4 further reveals
that different IDS products detect most of the relevant attacks. However, IDS products perform poorly
on non-relevant attacks and hence generate many false positives.

In addition, we observed that different IDS products may generate different outputs (alerts) for
a given attack. Some IDS products may perform well on specific attacks. This is further
illustrated by difference in accuracy and detection rates, as shown in Table 4. For example, the
accuracy of alerts generated by Snort IDS is between 12% and 14%. Actually, in the literature,
Snort has an average accuracy of about 12%. Snort records a slightly higher accuracy than other
IDS products because Snort has a relatively comprehensive signature database. Similarly, other
IDS products (Prelude and Shoki) recorded a lower accuracy, as shown in Table 4. The low
accuracy manifested in raw alerts across different IDS products justifies the need to employ an
alert verification technique to further improve the accuracy of alerts. Table 4 continues to reveal
that Snort IDS exhibited a higher detection rate of between 90% and 100% when compared with
other IDS products. To further explore the impact of the alert verification module, we describe
Table 4 in depth:
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Table 5. Accuracy and detection rates of transformed alerts (alert verification module)

DoS Telnet FTP MySQL SQL
Accuracy rates Before alert verification 13.2 12.9 14.36 12.7 12.46
After alert verification 87.43 96.46 97.03 94.33 92.96
Detection rates Before alert verification 84.33 88.9 97.06 92.06 89.8
After alert verification 74.06 85.83 94.23 86.9 83.8

* First row: indicates the number of attacks generated in our test bed.

» Second row: indicates the number of relevant attacks generated in our test bed.

e Third row: indicates the number of non-relevant attacks generated in our test bed.
e Fourth row: indicates the raw alerts from different IDS products.

 Fifth row: indicates true positive (TP) alerts.

e Sixth row: indicates false positive (FP) alerts.

¢ Seventh row: indicates false negative (FN) alerts.

* Eighth row: indicates accuracy rate before alert verification.

* Ninth row: indicates detection rate before alert verification.

Table 5 displays the results after employing the alert verification module in terms of accuracy
and detection rates for different classes of attacks. As demonstrated in Table 5, the proposed
scheme has improved the accuracy of alerts. The alert verification module filters out alerts that
show little or no similarity when compared to the threat profile of the test bed. As seen in Table 5,
the alert verification module improves the accuracy of alerts generated by different IDS products.
The table reveals that the alert verification module minimally affected the detection rates of IDS
products after the alert verification process. Several factors may have contributed to lower detection
rates. The alert verification module may eliminate some alerts with cases involving unknown
vulnerability or attack, hence lowering the detection rate. Consider the following scenario: an
IDS product may issue an alert for a successful attack but CVA data have not registered a corre-
sponding vulnerability for this attack and therefore the relevant alerts may be ignored or considered
as false alerts because they fail to match the vulnerabilities in CVA data during the alert verifica-
tion process. To minimize the influence of such scenarios in alert management, we suggest that
IDS products and CVA data should be updated frequently in order to address the issue of unknown
vulnerability and attacks. Finally, we note that the alert verification module is effective in eliminat-
ing non-relevant alerts generated by different IDS products and is able to successfully separate
false alerts from true alerts.

Figures 11 and 12 show bar graphs that compare the accuracy and detection rates of alerts be-
fore and after processing them by the proposed system. Figure 11 shows the accuracy rates of
alerts before and after alert verification. The proposed scheme has greatly improved the accuracy
of the raw alerts due to a robust alert verification process incorporated in this scheme. For example,
our scheme improved the accuracy rates of raw alerts reporting DoS attacks from 13.2% to
87.43%, as illustrated in Figure 11. Similarly, Figure 12 shows the detection rates of raw alerts
as well for validated alerts. As noted earlier, the proposed scheme has minimally affected the
detection rates of raw alerts.

4.2.2. Performance evaluation of alert aggregation module

As noted earlier, the alert verification does not guarantee final alerts of good quality since the validated
alerts may be redundant and isolated alerts. Redundant alerts are usually generated by multi-step
attacks and may overwhelm the analysts and therefore present challenges when analyzing the attack
trends. During this experiment, we observed that IDS products generate huge volumes of alerts within
a short period when detecting multi-step intrusions. This concept is further illustrated when IDS
products generated an overwhelming number of alerts in the first 2 minutes of the test period when
detecting Ping of Death attack. Further, the IDS products failed to establish the relationships among
these alerts. The main goal of the alert aggregation module is to reduce the huge number of redundant
and isolated alerts after the alert verification process.
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Figure 12. Detection rates

We evaluated the effectiveness of the alert aggregation module by employing the alert reduction rate
metric. This metric shows the percentage of filtered alerts (eliminated) by the aggregation module. We
used the following equation:

reduction rate = filtered alerts/total number of alerts

The results of alert aggregation are presented in Table 6. The table displays the number of non-
aggregated alerts (validated alerts) and the aggregated alerts (meta alerts) in each class of attack.
The table further shows the reduction rates after employing the alert aggregation module.

As seen in Table 6, the module reduces validated alerts significantly by rates of between 44.4% and
59.5%. 1t is crucial to note that the these reduction rates do not take into account several alerts that are
filtered (eliminated) by the alert verification module. We observed that the alert sub verifiers forward
the validated alerts to their corresponding sub alert aggregator correctly. This is explained by the fact
that the aggregation module runs the appropriate aggregation algorithm for each sub aggregator.

In addition, we used an undefined attack sub aggregator to process any alert reporting a new attack
(previously not known) in order to improve the management of alerts, thus increasing the detection
rate of unknown attacks. We used the result of the undefined attack sub aggregator to improve the alert
verification by streamlining the CVA data as well as the alert aggregation process.

Unlike existing alert correlation approaches, the proposed alert aggregation module further reduces
redundant and isolated alerts from multiple IDS products. As noted earlier, aggregating alerts
according to their sources (IDS products) may not be an effective way to reduce unnecessary alerts.
In fact, when a given attack occurs in a network, different IDS products may respond by generating
alerts that have similar features such as source address, destination address and reference i.d.s. Such
alerts need to be aggregated together based on their common features (such as reference i.d.s, source
and destination addresses) in order to further reduce redundant alerts.

As illustrated in Table 7, the alert aggregation module further reduces redundant and isolated alerts
across the IDS products. The table shows two types of meta alerts: shared and non-shared meta alerts.
Shared meta alerts refer to meta alerts that are shared by a given set of IDS products (in terms of
similar features such as source and destination addresses). For example, the first row of the column
named ‘IDS product’ shows that there are 78 meta alerts that are shared across the three IDS products.
The alert aggregation module further reduces the 78 meta alerts to 22 final meta alerts (by a rate of
71.7%). From this table we can deduce that our alert aggregation module has the ability to further
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Table 6. Alert reduction on validated alerts

Sub Remaining alerts after using alert aggregation

aggregator Number of validated alerts module (in the form of meta alerts) Reduction rate (%)
DoS 33 (14 ideal, 19 partial) 17 (6 ideal, 11partial) 48.48
Telnet 56 (23 ideal, 33 partial) 27 (9 ideal, 18 partial) 51.78

FTP 168 (60 ideal, 108 partial) 68 (17 ideal, 51 partial) 59.5
MySQL 72 (29 ideal, 43 partial) 40 ( 13 ideal, 27 partial) 44 4

SQL 46 (18 ideal, 28 partial) 24 ( 8 ideal, 16 partial) 47.8

reduce the shared meta alerts (the meta alerts exhibit similarity of features such as source and
destination addresses) generated by a given set of IDS products. The second type of meta alert, the
non-shared meta alerts, refer to meta alerts that are not shared by a given set of IDS products.

It is worth noting that the alert aggregation module successfully reduces redundant and isolated
alerts of shared meta alerts by a reduction rate of 68.4-71.7%, as illustrated in Table 7. Finally, we
reveal that it is very difficult to know the attack patterns if the attack period exceeds the expected
exploit cycle time since our module only targets meta alerts generated within the expected exploit
cycle time.

4.3. Processing time

We measured the maximum time taken to process alerts in two modules (alert verification and
aggregation modules). We noted that the alert verification module takes 0.031 seconds to successfully
complete the process of validating an alert. In addition, we noted that an alert aggregation module
takes 0.194 seconds to aggregate similar alerts (including time taken to aggregate similar alerts gener-
ated by different IDS products). Therefore the proposed approach takes a maximum of 0.225 seconds
to successfully process an alert in the two modules. Finally, we note that the proposed system presents
quality alerts and does not introduce unnecessary delays; hence analysts are able to react early to dif-
ferent intrusions.

4.4. Overall evaluation

As noted earlier the proposed system has two modules that improve the quality of alerts. In a nutshell,
the alert verification module filters out alerts with no corresponding vulnerability and the alert
aggregation module reduces the redundant and isolated alerts after alert verification. The system is
unique considering the fact that we are dealing with alerts from multiple IDS products. We remark that
the two modules of the proposed approach can be implemented in a network with multiple signature-
based IDS products without configuring the default signatures. In fact, CVA data require to be updated
with attack reference details of those IDS products accordingly in order to have comprehensive
network-specific vulnerabilities.

Table 8 compares the performance between the proposed approach and other similar approaches.
The proposed approach recorded the highest alert reduction rates in terms of false positives and

Table 7. Further meta alert reduction

Initial meta Final meta Reduction
Meta alerts IDS product alerts (input) alerts (output) rate (%)
Shared meta alerts Snort, Prelude, Shoki 78 22 71.7
Snort and Prelude, 19 6 68.4
Snort and Shoki 16 5 68.7
Prelude and Shoki 13 4 69.2
Non-shared meta alerts Snort 13 13 0.0
Prelude 18 18 0.0
Shoki 19 19 0.0
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redundant positive alerts. Our scheme recorded superior performance in eliminating the false positives
due to its robust alert verification engine. The scheme further reduces redundant validated alerts in the
form of meta alerts. The scheme is able to efficiently reduce huge volumes of unnecessary alerts
generated by multiple IDS products, unlike other existing approaches.

In terms of scalability, the proposed approach fared well. The scheme has a very robust algorithm
that is able to efficiently reduce a huge number of unnecessary alerts generated by multiple IDS
products. The proposed scheme has the highest number of raw alerts (2808) as input alerts and
recorded the highest alert reduction rate, as mentioned earlier (shown in Table 8). However, the
scheme performed better in terms of accuracy and detection rates because of the nature of alerts being
processed. The scheme is designed to handle alerts generated from multiple IDS products, unlike the
other two approaches. It is a fact that different IDS products have different accuracy and detection rates
and therefore have a negative impact on our scheme. It is important to note that one must take into
account that some IDS products have better detection and accuracy rates than others. Some IDS
products might generate alerts more slowly than others; hence this must be taken into consideration
when aggregating the alerts. In order to make the scheme more scalable in terms of alert reduction,
accuracy and detection rates when handling the overwhelming number of alerts from multiple IDS
products in large networks, we plan to explore the development of a more efficient mapping facility
to map attack reference i.d.s into CVA data.

In a nutshell, the proposed approach presents numerous benefits as far as alert management is
concerned. For example, we recorded superior performance in reducing huge volumes of
unnecessary alerts from multiple IDS products, as noted earlier. In addition, our system does not
require extensive training.

5. CONCLUSION

We have presented an approach to manage unnecessary alerts generated by multiple IDS products. The
critical components of the approach are alert verification and alert aggregation modules. The alert
verification module uses CVA data to improve the accuracy and quality of the raw alerts from multiple
IDS products by filtering out those with no corresponding vulnerability in a given network. The alert
aggregation module reduces redundant and isolated alerts generated by different IDS products. We
carried out an experiment that involved processing alerts from several classes of attacks using three
different IDS products and recorded high accuracy and reduction alerts of the IDS products.

We encountered several limitations that need to be addressed in order to obtain optimal results. Some of
the limitations include inefficient correlation between alerts and corresponding vulnerabilities because of
how IDS products and vulnerabilities reference each other. Further efforts should focus on creating a more
scalable and flexible automated mapping facility to map attack reference i.d.s into CVA data, as noted ear-
lier. There is a need to focus on mechanisms and policies in order to have an effective solution towards
reducing the influence of unknown attacks and vulnerabilities on alert management. Moreover, our future
work will include anomaly-based IDS in order to offer a more comprehensive solution. We believe the

Table 8. Performance comparison

Approach Sourour et al. [16] Njogu et al. [24] Proposed scheme
Technique Alert correlation Vulnerability-based Vulnerability-based alert
alert reduction for reduction for multiple
single IDS product IDS products
Initial alerts (input) 753 904 2808
Reduction rate of false 30.9 78.2 86.6
positives (%)
Reduction rate of redundant 33.0 52.4 76.8 (reduced redundant
positive alerts (%) validated alerts and
redundant meta alerts)
Accuracy rate (%) 10.9 96.1 93.6
Detection Rate (%) 95.3 92.6 84.9
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anomaly-based IDS can detect new attacks that are not detected by signature-based IDSs. We will focus
on how we can aggregate alerts from signature-based IDSs and anomaly-based IDSs. In order to further
evaluate the performance of the proposed approach, we plan to conduct more experiments with real traffic
tracing which will include alerts generated by multiple IDS products. Lastly, part of our future work is to
integrate Al techniques and algorithms, particularly those that handle the representation of logic as well as
reduction in the size of the database (alerts) in order to improve the alert management process, hence im-
proving the alert verification and aggregation processes and reducing unnecessary alerts.
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